Serveur d'exploration sur Pittsburgh

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transmembrane dynamics of water exchange in human brain

Identifieur interne : 007844 ( Main/Exploration ); précédent : 007843; suivant : 007845

Transmembrane dynamics of water exchange in human brain

Auteurs : Xiang He [États-Unis] ; Marcus E. Raichle [États-Unis] ; Dmitriy A. Yablonskiy [États-Unis]

Source :

RBID : ISTEX:6241BD55340E3AFAAE1605C67FCE14B570372903

Descripteurs français

English descriptors

Abstract

Tracking arterial spin labeled (ASL) water in the human brain with magnetic resonance imaging can provide important information on the dynamics of the trans‐capillary and trans‐membrane water exchange. This information however, is not only important from a basic biological standpoint, but also is essential for deciphering positron emission tomography and MRI perfusion experiments based on the movement of labeled water. While substantial information exists on water exchange through cellular membranes in vitro, the in vivo information remains limited and controversial. In this MRI study, we use a combination of pulsed ASL and recently developed quantitative blood‐oxygen‐level‐dependent technique to address this question. Our approach is based on the measurements of the intrinsic MR transverse relaxation (T 2*) properties of the ASL‐labeled water. We discovered that T 2* of the ASL‐labeled water in the extravascular space is 87 ms ± 10 ms while T 2* of the corresponding tissue water is much shorter, 50 ms ± 4 ms. This suggests that the ASL‐labeled water does not reach equilibrium with the extravascular tissue and is mostly localized to the extraneuronal space. We estimated that the water transport time through the neuronal membranes is on the order of several tens of seconds; a finding consistent with older PET tracer kinetic studies using 15O‐water. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.

Url:
DOI: 10.1002/mrm.23019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transmembrane dynamics of water exchange in human brain</title>
<author>
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
</author>
<author>
<name sortKey="Raichle, Marcus E" sort="Raichle, Marcus E" uniqKey="Raichle M" first="Marcus E." last="Raichle">Marcus E. Raichle</name>
</author>
<author>
<name sortKey="Yablonskiy, Dmitriy A" sort="Yablonskiy, Dmitriy A" uniqKey="Yablonskiy D" first="Dmitriy A." last="Yablonskiy">Dmitriy A. Yablonskiy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:6241BD55340E3AFAAE1605C67FCE14B570372903</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1002/mrm.23019</idno>
<idno type="url">https://api.istex.fr/document/6241BD55340E3AFAAE1605C67FCE14B570372903/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001656</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001656</idno>
<idno type="wicri:Area/Istex/Curation">001656</idno>
<idno type="wicri:Area/Istex/Checkpoint">001187</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001187</idno>
<idno type="wicri:doubleKey">0740-3194:2012:He X:transmembrane:dynamics:of</idno>
<idno type="wicri:Area/Main/Merge">007D21</idno>
<idno type="wicri:Area/Main/Curation">007844</idno>
<idno type="wicri:Area/Main/Exploration">007844</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Transmembrane dynamics of water exchange in human brain</title>
<author>
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">Pittsburgh</settlement>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Correspondence address: Department of Radiology, University of Pittsburgh, Presbyterian South Tower, 200 Lothrop Street, Pittsburgh</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Raichle, Marcus E" sort="Raichle, Marcus E" uniqKey="Raichle M" first="Marcus E." last="Raichle">Marcus E. Raichle</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Washington University in St Louis, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Neurobiology & Biomedical Engineering, Washington University in St Louis, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yablonskiy, Dmitriy A" sort="Yablonskiy, Dmitriy A" uniqKey="Yablonskiy D" first="Dmitriy A." last="Yablonskiy">Dmitriy A. Yablonskiy</name>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
<affiliation wicri:level="4">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Physics, Washington University in St Louis, Saint Louis, Missouri</wicri:regionArea>
<placeName>
<region type="state">Missouri (État)</region>
<settlement type="city">Saint-Louis (Missouri)</settlement>
</placeName>
<orgName type="university">Université Washington de Saint-Louis</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Magnetic Resonance in Medicine</title>
<title level="j" type="alt">MAGNETIC RESONANCE IN MEDICINE</title>
<idno type="ISSN">0740-3194</idno>
<idno type="eISSN">1522-2594</idno>
<imprint>
<biblScope unit="vol">67</biblScope>
<biblScope unit="issue">2</biblScope>
<biblScope unit="page" from="562">562</biblScope>
<biblScope unit="page" to="571">571</biblScope>
<biblScope unit="page-count">10</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2012-02">2012-02</date>
</imprint>
<idno type="ISSN">0740-3194</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0740-3194</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arterial blood</term>
<term>Arteriole side</term>
<term>Attenuation</term>
<term>Attenuation curves</term>
<term>Average oxygenation level</term>
<term>Average time</term>
<term>Background suppression</term>
<term>Blood flow</term>
<term>Blood oxygenation level</term>
<term>Brain tissue</term>
<term>Capillary</term>
<term>Capillary transit time</term>
<term>Capillary walls</term>
<term>Capillary water permeability</term>
<term>Cellular membranes</term>
<term>Cereb</term>
<term>Cereb blood flow metab</term>
<term>Cerebral blood flow</term>
<term>Cerebral blood flow values</term>
<term>Color figure</term>
<term>Control states</term>
<term>Corresponding gesse</term>
<term>Cyan line</term>
<term>Decay rate constants</term>
<term>Decay rates</term>
<term>Different gradient echo times</term>
<term>Different tissue compartments</term>
<term>Distinct compartments</term>
<term>Error bars</term>
<term>Exact estimation</term>
<term>Exchange rate</term>
<term>Extracellular</term>
<term>Extracellular water</term>
<term>Extraneuronal</term>
<term>Extraneuronal space</term>
<term>Extravascular</term>
<term>Extravascular space</term>
<term>Extravascular spaces</term>
<term>Extravascular water</term>
<term>Field inhomogeneities</term>
<term>Fitting procedure</term>
<term>Gesse</term>
<term>Gesse imaging block</term>
<term>Glial cells</term>
<term>Gradient echo time</term>
<term>Gray matter</term>
<term>Green line</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Imaging block</term>
<term>Imaging slice</term>
<term>Imaging volume</term>
<term>Inferior side</term>
<term>Intracellular</term>
<term>Intracellular water</term>
<term>Intraneuronal</term>
<term>Intraneuronal compartments</term>
<term>Intraneuronal space</term>
<term>Intraneuronal spaces</term>
<term>Intraneuronal water</term>
<term>Intraneuronal water life time</term>
<term>Intravascular</term>
<term>Intravascular compartment</term>
<term>Inversion</term>
<term>Inversion recovery</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magnetic resonance</term>
<term>Magnetic resonance imaging</term>
<term>Metab</term>
<term>Methods section</term>
<term>Online issue</term>
<term>Paramagnetic contrast agent</term>
<term>Parenchymal tissue</term>
<term>Perfusion</term>
<term>Perfusion images</term>
<term>Perfusion signal</term>
<term>Perfusion water signal</term>
<term>Permeability</term>
<term>Permeability surface product</term>
<term>Positron emission tomography</term>
<term>Post saturation delay</term>
<term>Postsaturation delay</term>
<term>Powder distribution</term>
<term>Primary astrocyte cultures</term>
<term>Proc natl acad</term>
<term>Pulse sequence</term>
<term>Raichle</term>
<term>Reference tissue signal</term>
<term>Relaxation</term>
<term>Relaxation time</term>
<term>Relaxation time constants</term>
<term>Reson</term>
<term>Saint louis</term>
<term>Same subject</term>
<term>Several tens</term>
<term>Signal behavior</term>
<term>Signal components</term>
<term>Signal contribution</term>
<term>Signal decay</term>
<term>Signal fraction</term>
<term>Signal fractions</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Single extravascular compartment</term>
<term>Slice thickness</term>
<term>Standard deviation</term>
<term>Superior side</term>
<term>Time scale</term>
<term>Tissue signal</term>
<term>Tissue water compartments</term>
<term>Tracer</term>
<term>Transit time</term>
<term>Transmembrane</term>
<term>Transmembrane dynamics</term>
<term>Transverse relaxation</term>
<term>Vascular artifacts</term>
<term>Venous blood</term>
<term>Volunteer subjects</term>
<term>Washington university</term>
<term>Water channels</term>
<term>Water composition</term>
<term>Water exchange</term>
<term>Water exchange processes</term>
<term>Water permeability</term>
<term>Water signal</term>
<term>Water transport</term>
<term>White matter tissues</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Arterial blood</term>
<term>Arteriole side</term>
<term>Attenuation</term>
<term>Attenuation curves</term>
<term>Average oxygenation level</term>
<term>Average time</term>
<term>Background suppression</term>
<term>Blood flow</term>
<term>Blood oxygenation level</term>
<term>Brain tissue</term>
<term>Capillary</term>
<term>Capillary transit time</term>
<term>Capillary walls</term>
<term>Capillary water permeability</term>
<term>Cellular membranes</term>
<term>Cereb</term>
<term>Cereb blood flow metab</term>
<term>Cerebral blood flow</term>
<term>Cerebral blood flow values</term>
<term>Color figure</term>
<term>Control states</term>
<term>Corresponding gesse</term>
<term>Cyan line</term>
<term>Decay rate constants</term>
<term>Decay rates</term>
<term>Different gradient echo times</term>
<term>Different tissue compartments</term>
<term>Distinct compartments</term>
<term>Error bars</term>
<term>Exact estimation</term>
<term>Exchange rate</term>
<term>Extracellular</term>
<term>Extracellular water</term>
<term>Extraneuronal</term>
<term>Extraneuronal space</term>
<term>Extravascular</term>
<term>Extravascular space</term>
<term>Extravascular spaces</term>
<term>Extravascular water</term>
<term>Field inhomogeneities</term>
<term>Fitting procedure</term>
<term>Gesse</term>
<term>Gesse imaging block</term>
<term>Glial cells</term>
<term>Gradient echo time</term>
<term>Gray matter</term>
<term>Green line</term>
<term>Human brain</term>
<term>Imaging</term>
<term>Imaging block</term>
<term>Imaging slice</term>
<term>Imaging volume</term>
<term>Inferior side</term>
<term>Intracellular</term>
<term>Intracellular water</term>
<term>Intraneuronal</term>
<term>Intraneuronal compartments</term>
<term>Intraneuronal space</term>
<term>Intraneuronal spaces</term>
<term>Intraneuronal water</term>
<term>Intraneuronal water life time</term>
<term>Intravascular</term>
<term>Intravascular compartment</term>
<term>Inversion</term>
<term>Inversion recovery</term>
<term>Magn</term>
<term>Magn reson</term>
<term>Magnetic resonance</term>
<term>Magnetic resonance imaging</term>
<term>Metab</term>
<term>Methods section</term>
<term>Online issue</term>
<term>Paramagnetic contrast agent</term>
<term>Parenchymal tissue</term>
<term>Perfusion</term>
<term>Perfusion images</term>
<term>Perfusion signal</term>
<term>Perfusion water signal</term>
<term>Permeability</term>
<term>Permeability surface product</term>
<term>Positron emission tomography</term>
<term>Post saturation delay</term>
<term>Postsaturation delay</term>
<term>Powder distribution</term>
<term>Primary astrocyte cultures</term>
<term>Proc natl acad</term>
<term>Pulse sequence</term>
<term>Raichle</term>
<term>Reference tissue signal</term>
<term>Relaxation</term>
<term>Relaxation time</term>
<term>Relaxation time constants</term>
<term>Reson</term>
<term>Saint louis</term>
<term>Same subject</term>
<term>Several tens</term>
<term>Signal behavior</term>
<term>Signal components</term>
<term>Signal contribution</term>
<term>Signal decay</term>
<term>Signal fraction</term>
<term>Signal fractions</term>
<term>Simulation</term>
<term>Simulation results</term>
<term>Single extravascular compartment</term>
<term>Slice thickness</term>
<term>Standard deviation</term>
<term>Superior side</term>
<term>Time scale</term>
<term>Tissue signal</term>
<term>Tissue water compartments</term>
<term>Tracer</term>
<term>Transit time</term>
<term>Transmembrane</term>
<term>Transmembrane dynamics</term>
<term>Transverse relaxation</term>
<term>Vascular artifacts</term>
<term>Venous blood</term>
<term>Volunteer subjects</term>
<term>Washington university</term>
<term>Water channels</term>
<term>Water composition</term>
<term>Water exchange</term>
<term>Water exchange processes</term>
<term>Water permeability</term>
<term>Water signal</term>
<term>Water transport</term>
<term>White matter tissues</term>
<term>Wiley periodicals</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Taux de change</term>
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tracking arterial spin labeled (ASL) water in the human brain with magnetic resonance imaging can provide important information on the dynamics of the trans‐capillary and trans‐membrane water exchange. This information however, is not only important from a basic biological standpoint, but also is essential for deciphering positron emission tomography and MRI perfusion experiments based on the movement of labeled water. While substantial information exists on water exchange through cellular membranes in vitro, the in vivo information remains limited and controversial. In this MRI study, we use a combination of pulsed ASL and recently developed quantitative blood‐oxygen‐level‐dependent technique to address this question. Our approach is based on the measurements of the intrinsic MR transverse relaxation (T 2*) properties of the ASL‐labeled water. We discovered that T 2* of the ASL‐labeled water in the extravascular space is 87 ms ± 10 ms while T 2* of the corresponding tissue water is much shorter, 50 ms ± 4 ms. This suggests that the ASL‐labeled water does not reach equilibrium with the extravascular tissue and is mostly localized to the extraneuronal space. We estimated that the water transport time through the neuronal membranes is on the order of several tens of seconds; a finding consistent with older PET tracer kinetic studies using 15O‐water. Magn Reson Med, 2012. © 2011 Wiley Periodicals, Inc.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Missouri (État)</li>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>Pittsburgh</li>
<li>Saint-Louis (Missouri)</li>
</settlement>
<orgName>
<li>Université Washington de Saint-Louis</li>
<li>Université de Pittsburgh</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Missouri (État)">
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
</region>
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
<name sortKey="He, Xiang" sort="He, Xiang" uniqKey="He X" first="Xiang" last="He">Xiang He</name>
<name sortKey="Raichle, Marcus E" sort="Raichle, Marcus E" uniqKey="Raichle M" first="Marcus E." last="Raichle">Marcus E. Raichle</name>
<name sortKey="Raichle, Marcus E" sort="Raichle, Marcus E" uniqKey="Raichle M" first="Marcus E." last="Raichle">Marcus E. Raichle</name>
<name sortKey="Raichle, Marcus E" sort="Raichle, Marcus E" uniqKey="Raichle M" first="Marcus E." last="Raichle">Marcus E. Raichle</name>
<name sortKey="Yablonskiy, Dmitriy A" sort="Yablonskiy, Dmitriy A" uniqKey="Yablonskiy D" first="Dmitriy A." last="Yablonskiy">Dmitriy A. Yablonskiy</name>
<name sortKey="Yablonskiy, Dmitriy A" sort="Yablonskiy, Dmitriy A" uniqKey="Yablonskiy D" first="Dmitriy A." last="Yablonskiy">Dmitriy A. Yablonskiy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amérique/explor/PittsburghV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007844 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 007844 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amérique
   |area=    PittsburghV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:6241BD55340E3AFAAE1605C67FCE14B570372903
   |texte=   Transmembrane dynamics of water exchange in human brain
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Jun 18 17:37:45 2021. Site generation: Fri Jun 18 18:15:47 2021